

Multiple Transport
Implementations
Strategies for Increased Configurability Using
the FACE™ Technical Standard, Edition 3.1

The Open Group FACE™ Army TIM Paper by:

Christopher J. Edwards, Systems Engineering Lead, CMS Team

Steven P. Price, Software Engineer, CMS Team/FACE TSS SC Lead

Rachel Moudy, Software Engineering Lead, CMS Team

Shaun Foley, Senior Software Engineer, Skayl

May 26, 2021

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 2

Table of Contents

Executive Summary ... 4

Background .. 5

Transport Services Capabilities ... 6

Transforms ... 6

Transport Protocol Module (TPM) .. 6

Type abstraction .. 6

Code generation of new data types .. 6

System Integrator Responsibilities ... 7

Configure the TSS Message and Data Flows .. 7

New types from a data model ... 7

Injectable Interface .. 7

TSS Type Specific and its Injectable ... 8

TSS Base and its Injectable .. 8

Supporting Multiple Transport Implementations 9

Support of Multiple Editions of the FACE Technical Standard 9

Integration Using the TPM ... 10

Integration Using Custom TSS Base and TypedTS Proxies 11

Integration Using Custom TSS Base and Direct Type Specific Calls 13

Integration Using Multiple TSS Bases ... 14

Integration Tasks Related to Type Abstraction 16

Integration Tasks Related to Transforms 17

Integration Tasks Using Code Generation 18

Conclusion .. 19

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 3

References ... 20

About the Author(s) .. 21

About The Open Group FACE™ Consortium 22

About The Open Group ... 22

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 4

Executive Summary

Reuse of software is a business objective for the Department of Defense (DoD) as a
mechanism to reduce costs for software related expenses. The effort to reuse software
is directly related to the design of that software and the target platform. Through
common use of the FACE™ Technical Standard, software architectures would be
aligned, reducing the impact of porting capability software from one platform to
another.

The system integrator is responsible for much of the porting and reusing as directed
by the platform. The variability in the development approach of software conformant
to the FACE Technical Standard can impact the effort a system integrator has to
incorporate that UoC into an existing system.

Several methods to approaching the integration of Transport Services Segment (TSS)
interfaces to Units of Conformance (UoCs) that use those services are presented here.
The results of this examination and recommendations are presented in this paper.

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 5

Background
The Rapid Integration Framework (RIF) is a set of components originally developed to the UH-60M Crew
Mission Station (CMS). The FACE approach was used in the development of the CMS Project (Edwards,
Price, & Mooradian, The Impact of the FACE Technical Standard on Achieving the Crew Mission Station
(CMS) Objectives, October, 2017). This use allowed the CMS components to be used in integration
demonstrations proving the value of the FACE approach at the FACE TIM of 2018 (Edwards, Rapid
Integration Framework (RIF) Demonstration Information Packet, 2018).

As part of the 2018 integrations, Skayl demonstrated integration of software components without recompile
using a data model integration approach. In 2021, RIF components were used to integrate alternative TSS
solutions. Components were converted to the FACE 3.1 Technical Standard. Experiments included both
using alternative Transport Service Segment (TSS) implementations and the use of multiple TSS
implementations within the same system. Alternative TSS solutions integrated into the CMS include the
Skayl product along with other TSS implementations.

One of the principal goals of the RIF experiments is to reduce the efforts to bring new capabilities to the
field. The FACE approach is aimed principally at software reuse, focusing on portable/reusable software as a
means to reduce software costs in the DoD.

If the goals of FACE Conformance are realized, software Units of Conformance (UoCs) that provide a
functional capability would not change as the logic is ported/reused on new platforms. The effort of bringing
a capability to a new platform will primarily fall to the system integrator. The principal efforts would include
the integration of that capability into the system via the TSS software.

This paper introduces some best practices for implementation into UoCs in the TSS, PCS, and PSSS
segments. When implemented, these best practices make the job of the system integrator easier and will
reduce overall integration time. This paper also addresses strategies for the system integrator when these best
practices are not followed in the development of software being integrated.

Note on the use of UoC: This paper is focused on the integrator’s effort to integrate multiple UoCs into a
system. These UoCs are typically in the Portable Component or Platform Specific Services segments,
particularly when describing how Transport Services are used. There are also cases where a UoC refers to
software in the TSS. The system integrator is responsible for integration of TSS components as well as
integrating other components to the TSS. Most cases the term UoC will include the name of the interface
that UoC uses in order to give context. In cases where UoC is used without a segment or interface, the text
refers to UoCs from any of the three segments.

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 6

Transport Services Capabilities
The FACE Technical Standard, Edition 3.0 (FACE Consortium, December 2017) and later offer several
capabilities that are analyzed as part of this paper.

Transforms

Data Transformations include the ability to transform a single data element from one Data Modeled type to
another. This can consist of unit conversion, synchronizing enumerations, or conversion from basic types
(i.e., integer to float). Additionally, it includes combining data from multiple sources into a new message and
sending the data at a different rate than the source. Data Transformation will be a regular aspect of integrating
a conformant UoC from a different system without changing that UoC. Data Transforms are also an essential
part of supporting configurable core capabilities (Edwards, Price, & Tanner, Transformation Capabilities in
Configurable Common Services, 2018).

When applying this to multiple TSS implementations, the transform approach should factor in the receipt of
data from differing TSS implementations.

Transport Protocol Module (TPM)

The TPM provides a means of linking two types of transports together, allowing the use of multiple transport
mechanisms within the logic of the Transport Service Segment (TSS).

Type abstraction

The Type Abstraction interface is provided to simplify conformance and separate the type specific aspects of
a TSS from the basic transport of the data. A TSS UoC can be implemented to a Type Abstraction interface.
It can then go through FACE Conformance without the need to add code to accept new types as they are
added to the system. A TS-TA Interface Adapter can be added to this TSS for each new type without
impacting the conformance of the larger TSS.

Therefore, a UoC in the TSS can provide the Type Abstraction interface and maintain conformance as new
types are added through TS-TA Interface Adapter. In a previous paper (Edwards, Price, & Tanner,
Transformation Capabilities in Configurable Common Services, 2018), the RIF team proposed that the Data
Marshalling and Transform capabilities are best suited for implementation in the TS-TA Interface Adapter to
minimize the areas that are type aware.

Code generation of new data types

Most transport products offer a means to generate the Type Specific interface. This can typically be from a
FACE Technical Standard Data Model or through header files generated from the Conformance Test Suite.
The FACE Conformance Program allows a certified conformant TSS UoC to provide a process for adding
types without running through conformance with the newly generated software, this allows maintaining
conformance as types are added.

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 7

System Integrator Responsibilities
When a system integrator accepts a new PCS or PSSS UoC into a system, it should be intended not to change
that UoC’s code. When using FACE Technical Standard, Edition 3.0 or later, some integration software must
be developed to link the Transport UoCs with the PCS and PSSS UoCs.

Configure the TSS Message and Data Flows

An obvious function provided by the system integrator is managing the data flows from one PCS/PSSS UoC
to the next. This routing of data is accomplished through TSS Configuration. System integrator knowledge of
how the TSS is configured and managed greatly influences the success of a timely integration effort.

Tooling provided with a TSS Solution, such as modeling tools to graphically connect the FACE Technical
Standard required UoC Supplied Models (USMs), can ease the effort in configuring a TSS. These tools can
also aid in identifying areas where transforms are needed.

New types from a data model

One of the primary things a system integrator must do is adapt the
system to use the new data types from a new UoC integration. Most
PCS/PSSS UoCs’ integrations will extend the number of messages
and data types that the TSS must support. Therefore, it will require
adapting the TSS to support these new messages and/or data types
through the mechanism presented by the TSS.

The UoC provider may provide a TS-TA Interface Adapter for the
Type Abstraction Interface that eliminates this work along with the
UoC. Care must be taken to integrate messages into the system
properly. Data Marshalling and Transform work may also be
needed.

Injectable Interface

Per the FACE Technical Standard, concrete instances of the TSS interfaces are provided through an
Injectable Interface. This means that the UoC using the transport services will provide a function for
accepting the implementation of TSS interfaces. This injectable method allows a single linked executable1 to
support multiple implementations of interfaces. The system integrator code will include instantiations of each
UoC in the executable. The integration code will pass the references of the correct interface instantiation to
the instantiations of the UoCs that use those interfaces.

1 The term executable in this document refers to the combined set of libraries and source code that is linked together into
a single image (in ARINC 653) or executable (in POSIX).

Recommended Practice:

Transport solutions should
provide tooling to support
system integrator tasks such
as adding new types and
configuring the system data
flows.

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 8

TSS Type Specific and its Injectable

The TSS Type Specific interface provides read and write
functionalities of the connection. The TSS Interface requires a unique
TSS interface for each data type used by each PSSS and PCS UoC.

Some PCS/PSSS UoCs will support multiple connections for
individual data types. A UoC may be designed to use a single
Set_Reference for all of these connections using a common data type.
However, it could also be designed to need a separate TSS
Set_Reference call for each connection. The system integrator may
desire that some of these connections come from one TSS
implementation source while others come from a different TSS
implementation.

TSS Base and its Injectable

The TSS Base interface provides the Initialize, Create_Connection and Destroy_Connection methods. When
a UoC calls the Create_Connection call, the system integrator code must ensure that the Create_Connection
for the TSS Base implementation comes from the same TSS product the connection will use.

Recommended Practice:

UoCs using the Type Specific
Interface should provide a Set
Reference interface for each
connection not just per type.

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 9

Supporting Multiple Transport Implementations
A transport implementation offers a wide variety of services to the system it supports. Services can range
from providing connectivity across multiple systems to providing connectivity to two PCS/PSSS UoCs
within the same address space. Communication may also use Pub/Sub or Command/Response mechanisms.
A wide variety of connected systems may use varying means to place data on the wire or even use differing
wiring hardware. Communication between two UoCs in the same address space may be most efficient if
using shared memory and read-callback functions, which some TSS implementations may not support.

Implementation of a single approach to the basic transport will lead to tradeoffs in complexity versus
effectiveness. Planning for a flexible transport implementation provides a means to support the breadth of
TSS possibilities while allowing a simple solution to the needs of each data flow. A single TSS
implementation that supports all capabilities may not be needed on a system that only uses Pub/Sub. A
system built with only Pub/Sub capabilities may have extra work ahead to add a connection to a Common
Object Request Broker Architecture (CORBA) based implementation on another platform. One task for the
system integrator is to determine the capabilities needed for the TSS.

As PCS/PSSS UoCs are integrated into the system, new TSS capabilities may be required. Additionally,
upgrades to the TSS functions may occur. As the TSS is linked to every application within the system,
modification of the TSS could have far-reaching implications for testing.

The use of a multiple TSS approaches in system design can mitigate future rework and qualification costs.
During S3I’s work to test new TSS implementations, only some of the messages were moved to a new TSS
implementation. UoCs using messages from multiple TSS implementations were configured to use the new
messages on the new TSS while existing messages remained on the original TSS. The result was that only a
small number of the UoCs in the system were affected by the new TSS.

Support of Multiple Editions of the FACE Technical Standard

The support of multiple editions of the FACE Technical Standard
follows a similar need. It is desirable for a system to support UoCs
written to FACE Technical Standard, Edition 2.1 and still support
UoCs conformant to Edition 3.0 and future versions of the technical
standard.

As part of the FACE Expo in 2018, the compatibility between the
FACE Technical Standard, Editions 2.1 and 3.0 was demonstrated
by using a transform within the TSS to convert Basic Avionics
Lightweight Source Archetype (BALSA) messages (Edwards,
Rapid Integration Framework (RIF) Demonstration Information
Packet, 2018).

In 2020, the RIF Team began converting UoCs over to FACE Technical Standard, Edition 3.1 using a
modification of the TSS and using a data model conversion that provided the same bit-wise messages. As
each UoC was converted, it was tested against the other FACE Technical Standard, Edition 2.1 components.

Recommended Practice:

Ensure transport solutions
provide a wire mechanism
that supports multiple
editions of the FACE
Technical Standard and
implement a plan for
maintaining that support.

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 10

Integration Using the TPM

The Transport Protocol Module (TPM) interface defined in the FACE Technical Standard, Edition 3.x allows
two TSS implementations to connect (FACE Consortium, May 2020). This approach has the interface to the
PCS/PSSS UoC using one TSS implementation. The TPM is best seen as a bridge between two systems using
different transport mechanisms. TSS UoCs can be designed to use a TPM interface to take advantage of these
benefits.

Implementation Details

When the TPM Set_Reference interface is invoked it passes the instance of the TPM UoC that was created.
The Transport Service will be responsible for retrieving the configuration and initializing the parameters it
requires. The system integrator will be responsible for setting the configuration parameters appropriately for
the reference they need to pass.

Additionally, the use of serialization methods is beneficial for retrieving instances of each message interface.
Those messages will have a unique identifier associated with it to help ensure the instance that is passed can
be marshalled or unmarshalled based upon the Interface Definition Language (IDL) data type.

Figure 1-Initializing a TPM Implementation

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 11

Figure 2 -Interfaces for Proxy Base and TypedTS interfaces

System Integrator Effort

For each of these approaches we will be examining the same five questions see Table 1: Using TPM Base
Details. Error handling is omitted, to focus on the more fundamental differences in the approaches.

Table 1: Using TPM Base Details

Category Details

What interfaces are injected into various related
UoCs?

Type Specific Base
Type Specific Typed (per type)
TPM Interface (per TPM)

How many steps in the Read/Write data flows? Includes marshalling calls

How many functions does the system integrator
write?

Setting all the References
Custom Serialization (possibly)

How many injectable interface calls? 1+ [number of TSS BASE] + [number of TypeSpecific]

Is the system integrator additionally burdened with
new types, marshalling, transforms?

Custom serialization code can simplify the transfer of
messages between protocols

Integration Using Custom TSS Base and TypedTS Proxies

One mechanism for integrating two TSS
implementations is to create proxies for the TS-
related interfaces injected into the PCS or PSSS
UoC. For this proof-of-concept, a PCS/PSSS UoC
originally using one TSS implementation was
integrated to use two TSS instances. Previously,
the TSS::Base and TSS::<data-type>::TypedTS
provided by a single Transport Service were
directly injected into the UoC. Neither the UoC
nor the TSS implementation were changed; all
modifications were to system integrator -supplied
“main()” code.

While another layer (albeit a thin one) is not ideal,
it may be necessary in cases where the UoC does not support being injected with multiple TS Bases or
TypedTS instances. The UoC in this exercise expected to be injected with a single Base (in contrast to per-
TypedTS) and a TypedTS per-type (in contrast to per-connection), but a similar approach will likely work for
UoCs with different injectable expectations.

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 12

Implementation Details

Two new classes were implemented: a BaseProxy class and a TypedTSProxy template class. BaseProxy
holds a reference to the TSS::Base provided by each TSS instance, and TypedTSProxy holds a reference to
the <data-type>::TypedTS provided by each TSS instance. Only a single BaseProxy object is created, while a
separate TypedTSProxy is required for each data type, since its APIs are type-specific. These proxy instances
are injected via Set_Reference into the UoC. After creating the separate TSS instances exactly as they would
be independently, the system integrator configures the proxies so that UoC function calls are routed to the
appropriate TSS instance.

There were two main complications to implement this routing. First, because each TSS instance is only
responsible for providing a unique connection ID within its own scope, BaseProxy::Create_Connection
cannot blindly return the ID. Instead, it must return an ID that is unique across all TSS instances and maintain
a mapping from this “global” ID to the “local” TSS-provided ID.

Second, and related, TypedTSProxy and BaseProxy must reference each other, which is somewhat awkward.
This is because TypedTSProxy is given a “global” ID, but must provide a “local” ID to the underlying TSS
instance. Furthermore, the routing to a TSS must be configured by connection name, not by ID – but the
BaseProxy implements Create_Connection where this linkage between connection name, “global” ID, and
“local” ID is made. Thus, TypedTSProxy must get this linkage from BaseProxy.

Note that only the Send_Message path was implemented for this prototype; however, the pattern should
apply for all TypedTS APIs

Figure 4: Create_Connection sequencing

Figure 3 - Send_Message sequencing

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 13

Lessons learned from the implementation

The Proxy approach looks at “impedance mismatches” between how the UoC expects the Base and TypedTS
interfaces to be injected and used. The separation of functions into separate Base and TypedTS interfaces
adds a lot of incidental complexity. An informal proposal for simplified APIs is in-progress. The core
simplification is to remove all or most Base methods and to require that a TypedTS reference be injected for
each UoC Connection. The interface_name parameter to Set_Reference would match the Connection name.
Thus, there is no need for UoCs to maintain the connection_id returned by Create_Connection – the reference
itself would uniquely identify the Connection. Then the system integrator would not need to create proxy
classes and could merely inject the desired TypedTS interface (i.e. the one provided by the TS instance the
system integrator wishes to associate with the connection) into the UoC.

Integration Using Custom TSS Base and Direct Type Specific Calls

In a variation of this approach, it is also possible to simply set the Type Specific references to the TSS
implementation that will be used for the connection. In this case the Custom TSS Base would simply return
the correct Connection ID from the create connection call.

A simpler mechanism for integrating two TSS implementations may be to allow the Type Specific API calls
made by the UoC to go directly to the underlying TSS implementation. In this case the call to Create
Connection must be routed to the correct TSS implementation. One means of handling that is to use a custom
TSS Base configured to pass the Create Connection on to the proper TSS Base.

This implementation should work no matter how the UoC decided to implement the TSS Set_Reference calls.
As it takes advantage of the separation from the TSS Base and the Type Specific implementations.

System Integrator Effort

For each of these approaches we will be examining the same five questions see Table 2: Using a Custom TSS
Base Details. Error handling is omitted, to focus on the more fundamental differences in the approaches.

Table 2: Using a Custom TSS Base Details

Catagory Details

What interfaces are injected? Type Specific Base
Type Specific Typed (per type)

How many steps in the Read/Write data flows? Two integer lookups, then forwarded to TSS instance call

How many steps in the Create/Destroy connection
data flows?

Two string lookups, two integer lookups, after TSS instance
call returns

How many functions does the system integrator
write?

One for each function in TSS::Base and TypedTS interfaces,
plus six for BaseProxy class and TypedTSProxy template
classes.

How many injectable interface calls? 1 + [# of Data Types]

Is the system integrator additionally burdened with
new types, marshalling, transforms?

No, but may depend on how TSS is implemented

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 14

Integration Using Multiple TSS Bases

Another mechanism to allow the Type Specific API calls made to
by the PCS/PSSS UoC to go directly to the underlying TSS
implementation is to pass each TSS Base to the UoC, so the UoC
calls the correct Create_Connection call for each connection. This
is similar to the use of a Custom TSS Base separate from the Type
Specific, but also reflects the forward-looking approach to combine
the TSS Base and Type Specific.

Implementation Details

This implementation requires the UoC using the Type Specific interface to implement a mapping of the TSS
Base to each Type Specific message. This requires a configuration parameter to identify the TSS Base for
each connection. The TSS Base identifier passed into the TSS Base Set Reference can provide the value for
this configuration item.

Figure 6: Create_Connection sequencing

Recommended Practice:

UoC implementations
supporting injections of
multiple TSS Base instances
support the greatest flexibility
in TSS support.

Figure 5 - Send_Message sequencing

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 15

System Integrator Effort

For each of these approaches we will be examining the same five questions see Table 3: Using multiple TSS
Base Details. Error handling is omitted, to focus on the more fundamental differences in the approaches.

Table 3: Using multiple TSS Base Details

Catagory Details

What interfaces are injected? Type Specific Base (per TSS)
Type Specific Typed (per type)

How many steps in the Read/Write data flows? One for each

How many steps in the Create/Destroy connection
data flows?

Three steps, a Create_Connection is sent to the
Typed_Interface, which calls TSS_Base_Manager’s getBase
to get the correct TSS Base using the connection name,
then Create_Connection is called referencing the correct
TSS_Base.

How many functions does the system integrator
write?

A function that performs Set_Reference calls

How many injectable interface calls? [number of TSS BASE] + [number of TypeSpecific]

Is the system integrator additionally burdened with
new types, marshalling, transforms?

No, however configuration of the UoC to allow for each
Typed_Message to be assoicated with the correct
TSS_Base.

The configuration of different TSS Base implementations generally requires unique resources. Within the
configuration of any given PCS/PSSS UoC is an indication of where each injected Base can find its resource,
based its name. That same name is also used for each typed connection, associating the Typed Message with
a specific Base. This information is passed to the Base in the Initialize(…) call. The BaseManager initializes
all the Base’s that the integration code has injected into it. This is done by the name in the integration code
matching the name of the Base in the UoC’s configuration; both managed by the System Integrator. The
BaseManager supports the Set_Reference, and holds a reference and the name of each Base.

The BaseManager class must be implemented in the PCS or PSSS UoC using the Transport Service
interfaces. Use of this technique may mean placing the requirement on the UoC vendor.

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 16

Integration Tasks Related to Type Abstraction
The use of a Type Abstraction UoC is a factor the system integrator may consider when selecting a TSS. The
use of a Type Abstraction UoC separates the core TSS functions from the type specifics, which can have
advantages in the qualification of the TSS libraries, reducing the size of the software units that would require
airworthiness analysis.

The design properties of a particular Transport Service implementation – for example, where capabilities
such as serialization or transforms reside – may affect how easy it is to [re-]integrate but note that the PCS or
PSSS UoC interaction will be largely unaffected. This is because there is no direct coupling of the
TypeAbstraction UoC to PCS/PSSS UoCs. UoCs get references to <data-type>::TypedTS and Base, but no
TypeAbstraction reference is injected. (Other references, such as FACE::Configuration may also be injected,
but these are separate from Transport Service APIs). Thus, approaches that forward or proxy TypedTS and
Base APIs should work whether a TS implementation chooses to use a TypeAbstraction UoC or not.

Another theoretical option to support using multiple transport implementations, assuming they are provided
as separate TS-TA Interface Adapter and Type-Abstract UoCs, is to choose a single Type Abstraction
implementation that is provided to both TS-TA UoCs. However, informal conversations with Transport
Service implementers hint that there may be too many open questions regarding the intra-TSS-APIs to make
this practical: Is data crossing the TA boundary serialized or just an opaque pointer to typed data? How is
memory for data objects managed? Can the TS-TA UoC be implemented in a different language from the
type-specific UoC?

Furthermore, it is unclear if there is a business need for this use case. The Transport Service Interfaces
presented to PCS or PSSS UoCs are crucial for portability. The TPM API is necessary for cross-TS-domain
interoperability. The TypeAbstraction API, on the other hand, benefits an implementation by separating
typed and untyped code (thus easing conformance, code reuse, and safety-certification). That said, a system
integrator could possibly write a similar forwarding/proxy class for the TypeAbstraction APIs to route
function calls between separate TS-TA Interface Adapter UoCs and a single Type Abstraction UoC.
Questions about data representation and memory allocation would need to be solved another way.

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 17

Integration Tasks Related to Transforms
Consider a case where a system integrator has a Transport Service that supports a known, fixed data type, but
one that the PCS/PSSS UoC. How can these be integrated? The ideal answer is within the Transport Service
via a Data Transform Capability, but what if that is not possible? Perhaps the Transport Service does not
support transforms or is provided in binary form and is not editable2. A possible approach is discussed below,
though it has not been prototyped.

Continuing the theme of integration “glue” code, such a transform could be performed in another proxy class
that implements the <data-type>::TypedTS interfaces, intercepting the PCS/PSSS UoC’s Send_Message()
call, performing the data transform, and then forwarding to the original Transport Service’s Send_Message().
The system integrator would need to provide, or at least have access to, the language-specific data type
definitions and TypedTS interfaces; however, this is likely already available since the UoC is already using
that type. Notably, the system integrator does not need to provide Serialization interfaces for the data type,
since the original TS implementation never sees the new type.

Having covered the simplest case, things quickly become more complex from here. What if there are two
Transport Service implementations with types A and B, but the PCS/PSSS UoC sends type C? A transforms
interaction with more than two types becomes much more complex. A linear pipeline where a transform has a
single input type and a single output type is convenient because the “in” and “out” APIs are analogous. The
system integrator supplied transform code may need to handle conditions like the underlying Transport
Service call blocking or returning an error, but the UoC code already had to handle the same conditions, so
much of this handling can be punted up a level to the caller.

However, when the intermediate transform code calls two or more downstream functions, there are multiple
approaches to handling errors. Understanding the sequence and semantics for using the Transport Service
APIs are important in maintaining proper system state. Suppose the PCS/PSSS UoC sends with a timeout, the
straightforward implementation would call Send_Message() for A and B in sequence, with appropriate
timeouts calculated. An approach that spawns two threads concurrently requires pre-planned coordination. A
producer-consumer queue is a common technique, but this adds another level of timeouts and buffering.

The receiving path is even harder since it must deal with both synchronous (Receive_Message) and
asynchronous (callbacks) receipt styles. Furthermore, code that splits one type into two is guaranteed to get
both types, or at least know at call-time there was a problem. Code that joins two types into one must deal
with delayed or missing data which complicates correlation.

In summary, the FACE Transport Service Interfaces allow the system integrator to insert custom transform
code between ported capabilities and the transport service without modifying either UoC. The system
integrator however, is responsible for selecting and implementing an appropriate approach for error handling.

2 Binary compatibility concerns regarding String, Sequence, and Fixed classes are out of scope for this paper.

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 18

Integration Tasks Using Code Generation

Code generation tools can greatly reduce the costs of integration. Integration tasks are greatly reduced when a
TSS UoC provides for code generation to support new data types. Most TSS vendors provide a means to
generate software from types expressed in the FACE USM.

The use of tools for system modeling and generation of TSS configurations from these system models are
another instance of tooling that can greatly reduce system integrator work. Such tooling can abstract the
details of TSS configuration from the user, allowing configuration through modeling tools.

The development of Data Transforms related to the integration of components will be of great use to a system
integrator. As demonstrated by Skayl in 2018, the use of a System Model in addition to the USM can assist in
the development of integration techniques without modification of application code.

The FACE Technical Standard, Edition 3.0 introduced more capabilities for the TSS that could be generated;
some of these features may also be supplied by Component Frameworks or Operating Systems Services.

The procurement of a TSS implementation should consider the tooling supported by the TSS in generating
integration software. Areas to look for include:

• Generation of Types from the USM, including the Type Specific Interface

• Generation of Data Transforms, including the combination of values from multiple messages, the
transformation for units and basic types

• Generation of message specific serialization functions for marshalling through a TPM

Note: Generation of FACE data types may allow for advantages in the compile and link step over the use of
the Type Abstraction UoC. The use of an Injectable Interface between the TS-TA Interface Adapter UoC and
the Type Abstraction UoC prevents the compiler from taking advantage of optimizations that can reduce code
size and eliminate some function call overheads.

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 19

Conclusion
We are all striving to stretch limited funding to acquire/produce more capabilities. Program Executive
Offices (PEOs), Project Offices and Product Offices program offices direct the requirements placed on
procured capabilities, including those enabled by FACE Conformant software. Selection of strategies in the
implementation of transport services within a system should be reflected in the procurement of UoCs in the
TSS, PSSS, and PCS to reduce the efforts required to integrate the software. Strategies should also include
automating the integration, reducing the amount of software required for airworthiness, and ensuring the
integration is well understood.

The approaches analyzed in the paper can all be used within system implementations when the UoC supports
the capabilities. Summaries of the results are in Table 4: Approach Analysis.

Table 4: Approach Analysis

Method Requirements Advantages Disadvantages

Integration Using TPM Requires TPM development
Should serialize messages to
reduce overhead

Does not require recompile of
existing software

Introduces overhead in
the sending and
receiveing of each
message.

Use of a Custom TSS
base

Requirement for support in
the TSS implementation, can
be developed by the system
integrator.
No requirements on the
PSSS/PCS

Can be used with any UoC
meeting the FACE Technical
Standard
Implements a mechanism that
is forward looking, and may
reduce rework for the next
edition of the FACE Technical
Standard
Direct Type Specific call may
provide the least overhead in
the Send/Recieve Message

System integrator needs
to write or generate, a
TSS tool can mitigate.

Use of multiple TSS
bases

Requires support in the
PSSS/PCS UoCs

Features the least overhead
in the Send/Recieve Message

UoCs may not support
this requireing use of
another method.

When analyzing the use of the TS-TA Interface Adapter v/s Code Generation without an abstraction
interface, the use of the abstraction interface adds another injectable call that cannot be optimized out. This
can lead to less efficient code. The use of this abstraction interface can, however, isolate the software into
discrete libraries that can have full airworthiness artifacts, limiting the new type code to the smaller library
that provides the Type Specific interface. The use of code generation that does not use the abstraction
interface would be favorable in lower criticality software.

Having the flexibility to use the most beneficial method at the appropriate time influences procuring TSS
UoCs and related tools.

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 20

References
 (Please note that the links below are good at the time of writing but cannot be guaranteed for the future.)

Christopher J. Edwards, S. P. (2018). Transformation Capabilities in Configurable Common
Services. The Open Group.

Edwards, C. J. (2018). Rapid Integration Framework (RIF) Demonstration Information Packet.
Proceedings of the 2018 September US Army FACE™ Technical Interchange Meeting.
Huntsville, AL: The Open Group.

Edwards, C. J., Price, S. P., & Mooradian, D. H. (October, 2017). The Impact of the FACE Technical
Standard on Achieving the Crew Mission Station (CMS) Objectives. The Open Group.

Edwards, C. J., Price, S. P., & Tanner, W. G. (2018). Transformation Capabilities in Configurable
Common Services. The Open Group.

FACE Consortium. (24 Jun 2014). Technical Standard for Future Airborne Capability Environment
(FACE), Edition 2.1. The Open Group. Retrieved from www.opengroup.org/library/c145

FACE Consortium. (December 2017). Technical Standard for Future Airborne Capability
Environment (FACE), Edition 3.0. The Open Group. Retrieved from
www.opengroup.org/library/c17c

FACE Consortium. (May 2020). Reference Implementation Guide for FACE™ Technical Standard,
Edition 3.0, Volume 2: Computing Environment. The Open Group.

PEO Aviation. (2018). Rapid Integration Framework (RIF) Demonstration Information Packet.
Proceedings of the 2018 September US Army FACE™ Technical Interchange Meeting.
Huntsville, AL: The Open Group.

Price, S. P., & Edwards, C. J. (2017). A Common Command Interface for Interactive FACE Units of
Conformance. The Open Group.

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 21

About the Author(s)

 Christopher J. Edwards has been working in the avionics industry for over 25 years, primarily on
cockpit systems for military aircraft. In those years, he has served in leadership roles in System
Architecture, Software Development, Requirements Capture, PVI development, Qualification
Testing, and Project Management. Mr. Edwards work within the FACE Consortium has been as a
principal author on both the FACE Conformance Policy and the FACE Technical Standard as well
as many other consortium documents. Mr. Edwards currently leads the FACE Conformance
Overview presentations and serves as a co-lead of the FACE Technical Working Group (TWG)
Conformance Verification Subcommittee and as the facilitator of the FACE Verification Authority
Community of Practice. Mr. Edwards serves as a MOSA Subject Matter Expert and is the Chief
Architect and Systems Engineer for the Fixed Wing Family of Systems as well as other RIF related
projects.

Steven P. Price has been working in avionics and embedded software for more than 30 years. He
has worked on several different graphic user interfaces, including cockpit systems. He has been a
leader in the design and implementation of some of these systems, along with being involved with
the testing of some of these systems. Currently, Mr. Price is one of the Principal Software
Engineers for RIF and the principal developer of the CMS Menu System. He is a co-lead on the
FACE Transport sub-committee and FACE Verification Authority Subject Matter Expert (SME),
along with involvement in other FACE sub-committees.

Rachel D. Moudy has been working in the missile defense and avionics industry for the past 9 years
designing, developing, and integrating military software solutions. Currently, Mrs. Moudy supports
the CMS team as the Software Engineering Lead and the Systems MBSE Lead for the Fixed Wing
Family of Systems. She continues to acquire knowledge of user and design interactions to improve
and create innovative solutions. Mrs. Moudy is currently pursuing a Master of Science in Human
Factors with a concentration in Aerospace to ensure warfighter’s behavior is captured throughout
designs.

Shaun Foley is a senior software engineer at Skayl. He has 15 years of experience as a distributed
systems consultant for defense and commercial customers in North America and Europe. He
appreciates the integration and interoperability challenges at all levels of abstraction: the need for
consistent data definitions, the need to maintain legacy functionality, and the pragmatic constraints
of real-time and embedded platforms.

 Multiple Transport Implementations

www.opengroup.org Th e O p e n Gr o u p F AC E ™ Ar m y TI M P ap e r 22

About The Open Group FACE™ Consortium
The Open Group Future Airborne Capability Environment™ Consortium (the FACE™ Consortium), was
formed as a government and industry partnership to define an open avionics environment for all military
airborne platform types. Today, it is an aviation-focused professional group made up of industry suppliers,
customers, academia, and users. The FACE Consortium provides a vendor-neutral forum for industry and
government to work together to develop and consolidate the open standards, best practices, guidance
documents, and business strategy necessary for acquisition of affordable software systems that promote
innovation and rapid integration of portable capabilities across global defense programs.

Further information on the FACE Consortium is available at www.opengroup.org/face.

About The Open Group
The Open Group is a global consortium that enables the achievement of business objectives through
technology standards. Our diverse membership of more than 800 organizations includes customers, systems
and solutions suppliers, tools vendors, system integrators, academics, and consultants across multiple
industries.

The mission of The Open Group is to drive the creation of Boundaryless Information Flow™ achieved by:

• Working with customers to capture, understand, and address current and emerging requirements,
establish policies, and share best practices

• Working with suppliers, consortia, and standards bodies to develop consensus and facilitate
interoperability, to evolve and integrate specifications and open source technologies

• Offering a comprehensive set of services to enhance the operational efficiency of consortia

• Developing and operating the industry’s premier certification service and encouraging procurement of
certified products

Further information on The Open Group is available at www.opengroup.org.

http://www.opengroup.org/face
http://www.opengroup.org/

	Multiple Transport Implementations
	Strategies for Increased Configurability Using the FACE™ Technical Standard, Edition 3.1
	Christopher J. Edwards, Systems Engineering Lead, CMS Team
	Steven P. Price, Software Engineer, CMS Team/FACE TSS SC Lead
	Rachel Moudy, Software Engineering Lead, CMS Team
	Shaun Foley, Senior Software Engineer, Skayl
	May 26, 2021

	Table of Contents
	Executive Summary
	Background
	Transport Services Capabilities
	Transforms
	Transport Protocol Module (TPM)
	Type abstraction
	Code generation of new data types

	System Integrator Responsibilities
	Configure the TSS Message and Data Flows
	New types from a data model
	Injectable Interface
	TSS Type Specific and its Injectable
	TSS Base and its Injectable

	Supporting Multiple Transport Implementations
	Support of Multiple Editions of the FACE Technical Standard
	Integration Using the TPM
	Implementation Details
	System Integrator Effort

	Integration Using Custom TSS Base and TypedTS Proxies
	Implementation Details
	Lessons learned from the implementation

	Integration Using Custom TSS Base and Direct Type Specific Calls
	System Integrator Effort

	Integration Using Multiple TSS Bases
	Implementation Details
	System Integrator Effort

	Integration Tasks Related to Type Abstraction
	Integration Tasks Related to Transforms
	Integration Tasks Using Code Generation
	Conclusion
	References
	About the Author(s)
	About The Open Group FACE™ Consortium
	About The Open Group

